Cellular Mechanisms of Necrosis Essay

Cellular Mechanisms of Necrosis Essay

Execution mechanisms

Sun et al. in 2012 revealed that the RIP3-MLKL interaction is indispensable for the necroptotic pathway execution. In the same experiment, they figured that MLKL expressing cells without the capability to phosphorylate with RIP3 at Thr357 and Ser358, or with defect RIP3 kinase domain do not undergo necroptosis. One year later, Wu et al. further proposed that MLKL deficient mice cells are capable of enduring apoptosis, while being unresponsive to certain necroptotic cell death stimuli, such as TNF-α. Taking their findings into consideration, as well as the fact that the RIP1-RIP3-MLKL complex formation is not a cytotoxic event, it should be deduced that the pre-mentioned complex cannot be the endpoint of the necroptotic path activation, and that additional proteins must be associated with the process. Cellular Mechanisms of Necrosis Essay.

On the other hand, necrosis has been known for a long time. Unlike necroptotic intracellular phenomena, the necrotic ones, such us the ROS (reactive oxygen species) formation and the ionic homeostasis disruption had been extensively observed and studied. Thus, the corresponding active participation of these necrotic incidents in the necroptotic cascade was ambiguous, as was the mitochondrial and membrane involvement. Recently, though, both organelles were accredited as necroptotic process dynamic members.

ORDER A PLAGIARISM-FREE PAPER NOW

MLKL oligomerization and ionic homeostasis disruption

Cell volume change is a morphologic phenomenon inextricably linked with cell death and distinctive for every type. Kerr et al. in 1972 highlighted cell volume loss as a notable dissimilarity between apoptosis and necrosis. They indicated that cell shrinkage is a diverse aspect discriminating the former from the latter, and confirmed that apoptotic cell loses its volume, as water accompanied with minerals (K+, Cl) migrates through its membrane to extracellular compartments. Necrosis, formerly characterized solely as a pathologic cell death type, was already distinguishable by cell swelling and cell membrane physical disruption, leading to intracellular contents leakage into extracellular space. An inflammatory response was later inducted, as a simultaneous immune cell infiltration was promoted. In 2005, when necroptosis was first described as a programmed cell death type, the issue concerning its interference in cellular ionic homeostasis was rationally developed.

Interestingly, recent findings correlated MLKL with the plasmatic membrane permeability regulation. Two independent researches done by Cai et al. and Chen et al. in 2014 refer to an enforcement mechanism, characterized by MLKL oligomeric structure formation, and successive membrane permeability to certain ions. Both claimed that MLKL oligomerizes through its amino-terminal four-helix bundle, thus provoking its translocation towards plasma membrane. MLKL oligomerization is secured by the RIP3 kinase mediated phosphorylation at the Thr357 and Ser358 residues, found on MLKL kinase-like domain. Cai et al. specifically stated that both divergent MLKL coiled-coil domains are crucial for necroptosis, although for different reasons. The first is implicated in the MLKL recruitment to membranes, whereas the second is in control of its oligomerization.

The explicit MLKL function in membranes is not completely illustrated, though, as intra-experimental variations regarding the oligomers number and the ionic influx nature exist. Cai et al., after experimenting on HT29 (human colorectal adenocarcinoma) cells, stated that MLKL forms a homotrimeric structure through its amino-terminal coiled-coil domain during TNF-α induced necroptosis and zVAD.fmk presence.Cellular Mechanisms of Necrosis Essay.  They further declared that MLKL binds to the TRMP7 (transient receptor potential melastatin 7) ion channel located in the plasma membrane, which subsequently leads to Ca2+ influx and cell death. On the other hand, Chen et al. experimented on L929 mice cells and proposed that MLKL forms a homotetramer under the same conditions, and that its influence in membranes is derived from its Na+ channels regulation, which provokes Na+ions entry, osmotic pressure increase and plasma membrane rupture. To make matters more complicated, a third experiment performed by Wang et al. in the same year respectively showed that oligomerized MLKL binds with membrane lipids through the positively charged amino acids, placed in its amino-terminal, and that MLKL might directly induce pore formation and membrane disruption.

Taking all these into serious consideration, we can assume that the exact execution mechanism responsible for the ionic homeostasis disruption and MLKL oligomerization during necroptosis induction is currently not adequately described, and need to be further defined in the near future.

ROS formation

Endogenous ROS (reactive oxygen species) suggest a natural cellular byproduct, created by oxygen metabolism in mitochondria, and its significance is proven in cell death among others. Their formation has been thoroughly examined in the apoptotic phenomenon throughout the years and rationally their existence in non-apoptotic cases, such as necroptosis was questioned, thus resulting to various independent studies

For instance, Lin et al. in 2004 suggested that TNF-α induced non-apoptotic cell death necessitates ROS accumulation and that the RIP, TRAF2 and FADD proteins are capable of mediating it. To prove their point, they exposed MEF (mouse embryonic fibroblasts) cells to TNF-α, and then respectively measured the ROS presence extent. They further confirmed ROS essentiality to the whole process by incubating MEF cells with BHA (butylated hydroxyanisole) antioxidant, which blocked their accumulation, and prevented the imminent cell death. Furthermore, Vanlangenakker et al. in 2005 observed elevated ROS production shortly after necroptotic pathway was introduced to L929 cells. The cells were subsequently treated with BHA, and shortly after cytoplasmic ROS formation inhibition through siRNA mediated NOX1 (NADPH oxidase 1) knockdown was detected. NOX1, respectively, did not influence TNF-α induced cell death. Their effort was in fact the first one explicitly implicating ROS formation in necroptosis. 2 years later, Kim et al showed that NOX1 can be involved in ROS generation, as it might couple with TRADD provided that RIP1 is present, and a preceding TNFR1 stimulation occurs. According to their research, NOX1 knockout presented reduced sensitivity towards necroptosis. Cellular Mechanisms of Necrosis Essay.

Three different teams, Zhang et al. in 2009, Davis et al. in 2010 and Wang et al. in 2012 implicated RIP1, RIP3, and MLKL in a feasible translocation to the mitochondria upon stimulation, thus indicating that ROS production can actually be a significant member of the necroptotic cascade execution. More specifically, besides reporting RIP1 and RIP3 translocation to the mitochondria in MEF cells, Davis et al. managed to restrain necrosis in endothelial cells by using the mitochondrial antioxidant MnSOD (manganese superoxide dismutase). Zhang et al., while trying to investigate mitochondrial components likely to play a key role in TNFα-induced necroptosis, noticed that RIP3 translocates to the mitochondria, interacts with the GLUD1 (glutamate dehydrogenase 1), PYGL (glycogen phosphorylase) and GLUL (glutamate-ammonia lyase) mitochondrial proteins and elevates their activity. Taking this into account, they indicated that their knockdown may partially block TNFα-induced ROS production. Wang et al. found that the necrosome activates and moreover interacts with the mitochondrial phosphatase PGAM5 (phosphoglycerate mutase family member 5), after translocating to the mitochondria. PGAM5 can be presented in two forms, PGAM5L and PGAM5S, where the former represents the long variant and the latter the short one. An attainable knockdown of either one can result to TNF-α mediated necrosis and ROS formation deterioration. In addition, the team proved that the necrosomal signaling through PGAM5S gives birth to mitochondrial fragmentation in a Drp1 (dynamin-like related protein 1) manner, after experimenting in HeLa cells. They concluded their work by pointing out a definite interaction between RIP1, RIP3 and PGAM5, as siRNA mediated Drp1 knockdown, and mdivi-1 mediated Drp1 inhibition were both able to prevent TNF-α mediated necrosis.

Finally, Baines in 2010 proposed MPT (mitochondrial permeability transition) pore as a probable mitochondrial necroptotic mediator that might provide a link to ROS production. The MPT pore is a non-specific, wide channel crossing the inner mitochondrial membrane, whose potential opening leads to ROS production, mitochondrial transmembrane potential loss, oxidative phosphorylation failure, and eventually organelle swelling and rupture.

Irreversible injury to cells as a result of encounters with noxious stimuli invariably leads to cell death. Such noxious stimuli include infectious agents (bacteria, viruses, fungi, parasites), oxygen deprivation or hypoxia, and extreme environmental conditions such as heat, radiation, or exposure to ultraviolet irradiation.Cellular Mechanisms of Necrosis Essay. The resulting death is known as necrosis, a term that is usually distinguished from the other major consequence of irreversible injury, known as cell death by apoptosis. Apoptosis is a programmed or organized cell death which could be physiological or pathological. Additional information regarding this form of cell death is outside of the scope of this chapter. Necrosis as a form of cell death is almost always associated with a pathological process.

When cells die by necrosis, they exhibit two major types of microscopes or macroscopic appearance. The first is liquefactive necrosis, also known as colliquative necrosis, is characterized by partial or complete dissolution of dead tissue and transformation into a liquid, viscous mass. The loss of tissue and cellular profile occurs within hours in liquefactive necrosis. In contrast to liquefactive necrosis, coagulative necrosis, the other major pattern, is characterized by the maintenance of normal architecture of necrotic tissue for several days after cell death.

Liquefaction derives from the slimy, liquid-like nature of tissues undergoing liquefactive necrosis. This morphological appearance is attributable in part to the activities of hydrolytic enzymes which causes dissolution of cellular organelles in a cell undergoing necrosis. The enzymes responsible for liquefaction are derived from either bacterial hydrolytic enzymes or lysosomal hydrolytic enzymes.[1][2][3]

Other types of Necrosis

In addition to liquefactive and coagulative necrosis, the other morphological patterns associated with cell death by necrosis are:

  • Caseous Necrosis
  • Fat Necrosis
  • Gangrenous Necrosis
  • Fibrinoid necrosis

The other types of necrosis listed above do not represent distinct pathological entities. Rather, they are descriptive terms that are widely used to describe necrosis occurring in specific clinical scenarios or organ damage. Cellular Mechanisms of Necrosis Essay.

Coagulative

This is the default pattern of necrosis associated with ischemia or hypoxia in every organ in the body except the brain.[4][5]

  • Gross Appearance: tissue is firm and architecture is maintained for days after cell death.
  • Microscopic: Preserved cell outlines without nuclei.

Liquefactive

The pattern of necrosis seen with infections. Also, the pattern is seen following ischemic injury in the brain. While the reason for liquefactive necrosis following ischemic injury in the brain is poorly understood, the release of digestive enzymes and constituents of neutrophils is the reason for liquefaction in infections.[6][7]

  • Gross Appearance: The tissue is in a  liquid form and sometimes creamy yellow because of pus formation.
  • Microscopic: Inflammatory cells with numerous neutrophils.

Caseous

A unique type of cell death seen with tuberculosis.

  • Gross Appearance: White, soft, cheesy-looking (caseating) material
  • Microscopic: A uniformly eosinophilic center (necrosis) surrounded by a collar of lymphocytes and activated macrophages (giant cells, epithelioid cells). The entire structure formed in response to tuberculosis is known as a granuloma.  Cellular Mechanisms of Necrosis Essay.

Fat Necrosis

Fat necrosis occurs from acute inflammation affecting tissues with numerous adipocytes such as pancreas and breast tissue. Damaged cells release digestive enzymes which break down lipids to generate free fatty acids.

  • Gross Appearance: Whitish deposits as a result of the formation of calcium soaps.
  • Microscopic: Anucleated adipocytes with deposits of calcium (Seen on H&E as areas of bluish stains).

Fibrinoid Necrosis

This is a pattern associated with vascular damage (autoimmunity, immune-complex deposition, infections (viruses, spirochetes, rickettsiae)).

  • Gross Appearance: Usually not grossly discernible.
  • Microscopic: Deposition of fibrin within blood vessels.

Gangrenous Necrosis

Clinical use, to describe ischemic necrosis of the lower limbs.(sometimes upper limbs or digits).

  • Gross Appearance: Black skin with varying degree of putrefaction.
  • Microscopic: Combination of coagulative necrosis, due to ischemia (dry gangrene); and liquefactive necrosis (wet gangrene) if a bacterial infection is superimposed.

These all represents morphological patterns which are visible grossly and microscopically. Fibrinoid necrosis is usually visible only microscopically. We discuss the characteristic gross and microscopic findings in liquefactive necrosis in subsequent paragraphs.

Go to:
Etiology

Patterns of necrosis (liquefactive or coagulative) are determined by the cause of cell death, organ affected, and duration of cell death.

Liquefactive necrosis is a pattern of cell death caused by several etiological factors.

The major causes of liquefactive necrosis are:

In all solid organs of the body:

  • Infectious agents (bacteria, fungi, viruses, parasites)

In the brain

  • Infectious agents
  • Hypoxia/Ischemia (the occurrence of liquefaction as a pattern of necrosis in response to hypoxic injury in the brain is an exception to observed findings in the rest of the body. Tissues in all other mammalian body systems usually undergo cell death by coagulative necrosis in response to hypoxia. The reason for this difference is poorly understood).Cellular Mechanisms of Necrosis Essay.
Go to:
Pathophysiology

Liquefactive Necrosis

Three major factors contribute to liquefactive necrosis:

  1. Enzymatic digestion of cellular debris in dead or dying tissues.
  2. Enzymatic digestion of surrounding tissues.
  3. Denaturation of cellular proteins.

Because infectious agents are rich in digestive enzymes and likely to elicit an inflammatory response, they can bring about the process of cellular digestion rapidly. This manifests as liquefactive necrosis. Cellular dissolution and digestion are brought about by several enzymes some from the infecting organism and some from the lysosome of the dying cells.

Enzymes involved in liquefaction includes:

  • Proteases (Collagenases, elastases),
  • DNases
  • Lysosomal enzymes

Coagulative Necrosis

A major difference between liquefactive and coagulative necrosis is the fact that in liquefactive necrosis, the enzyme system of the necrotic tissue is intact and can commence the process of cellular digestion almost immediately via autolysis. In addition to self-digestion (autolysis), heterolysis occurs as a result of a release of enzymes and inflammatory cells from the invading organism.

In coagulative necrosis, cellular digestion is principally dependent on heterolysis since a hypoxic injury would have damaged the enzymes of the cell undergoing ischemic necrosis. This partly explains the late onset of digestion and removal of dead tissues in this type of necrosis.

ORDER A PLAGIARISM-FREE  PAPER NOW

Caseous Necrosis

This pattern is almost unique to tuberculosis. Certain fungi can also exhibit caseous necrosis. In tuberculosis, the organism is partially resistant to digestion and phagocytosis by tissue macrophages, and this leads to activation of the macrophages to form giant cells and epithelioid cells. This sets off several steps which lead to recruitment of more macrophages and inflammatory cells and production of cytokines and slow degradation of the mycobacteria. Mycolic acid and other lipid constituent of the mycobacteria cell wall confers a characteristic “cheese-like” appearance on the tubercle of tuberculosis hence the descriptive term,”caseous.”

Fat Necrosis

The release of lipases and amylases from the pancreatic cells is the major trigger for fat necrosis in the pancreas. This processed is usually triggered by several factors leading to inflammation of the pancreas, otherwise known as pancreatitis. Causes of acute pancreatitis include alcohol, gall bladder stones, poisoning, and insect bites. Since fat necrosis in the pancreas is triggered by an inadvertent release of enzymes, this process is also referred to as enzymatic fat necrosis. Breast tissues can also give rise to fat necrosis. The trigger for this is usually trauma.Cellular Mechanisms of Necrosis Essay.

Fibrinoid Necrosis

This is a pattern which not grossly discernible but can be seen microscopically. Fibrinoid necrosis is a pattern of cell death characterized by endothelial damage and exudation of plasma proteins (especially fibrin).

Gangrenous Necrosis

See description in the introduction above. Not a true pathological type, rather, it is a clinical term describing coagulative necrosis (dry gangrene) or sometimes liquefactive necrosis (wet gangrene) affecting the extremities. Cellular Mechanisms of Necrosis Essay.

start Whatsapp chat
Whatsapp for help
www.OnlineNursingExams.com
WE WRITE YOUR WORK AND ENSURE IT'S PLAGIARISM-FREE.
WE ALSO HANDLE EXAMS